

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Magnetic properties of GdPdSb and GdNiSb studied by ¹⁵⁵Gd-Mössbauer spectroscopy

B. Bielemeier^a, G. Wortmann^{a,*}, F. Casper^b, V. Ksenofontov^b, C. Felser^b

^a Department Physik, Universität Paderborn, D-33098 Paderborn, Germany ^b Institut für Anorg. und Analyt. Chemie, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

ARTICLE INFO

Article history: Received 27 June 2008 Received in revised form 19 September 2008 Accepted 22 September 2008 Available online 9 December 2008

PACS: 75.25+z 5.30.-m 76.80.+y

Keywords: Rare earth compounds Magnetic properties Mössbauer spectroscopy

1. Introduction

Intermetallic compounds of LnMX type, where Ln is a lanthanide element, M is a transition metal and X is an sp element, have been studied intensively in recent years because of a large variety of structural, electronic and magnetic properties [1–3]. Here we studied the magnetic properties GdPdSb and GdNiSb, investigated previously with other methods [3–5], with ¹⁵⁵Gd-(86.5 keV)-Mössbauer spectroscopy.

2. Experimental

The preparation of the GdPdSb sample is described in Ref. [3], where the structural, electronic and magnetic properties were studied by a variety of methods, including band structure calculations. The derived lattice parameters of the hexagonal LiGaGe structure are in good agreement with the ones derived recently from single-crystals of GdPdSb [6]. As known from literature, GdNiSb may exhibit two different phases, a high-temperature phase with hexagonal AlB₂-type structure and a low-temperature phase with cubic MgAgAs-type structure [4,5]. The present GdNiSb sample contained both phases, as indicated by the XRD pattern and by the Mössbauer spectra shown below. Details of the sample preparation may be found elsewhere [7].

* Corresponding author. E-mail address: Wortmann@physik.upb.de (G. Wortmann).

ABSTRACT

 155 Gd-Mössbauer spectroscopy was applied to study the magnetic properties of GdPdSb with hexagonal LiGaGe structure and of GdNiSb in the cubic MgAgAs-type structure as well as in the hexagonal AlB₂-type structure. In GdPdSb magnetic ordering is observed at 13.0 K with indications of a tilted spin structure at lower temperatures. In the cubic phase of GdNiSb magnetic ordering is observed at 9.5 K and in the hexagonal phase around 3.5 K. These results are discussed in conjunction with previous investigations of these samples.

© 2008 Elsevier B.V. All rights reserved.

The 155 Gd-Mössbauer spectra were acquired using a 155 Eu:SmPd₃ source, which was moved sinusoidally at the same temperature as the absorber. The Mössbauer spectra were recorded in a He bath cryostat in the temperature range 1.8–48 K, the temperature of the absorber was monitored by a Si diode and kept constant within 0.1 K by a LakeShore cryogenic controller. The 155 Gd-spectra were analysed by a fit program which provided a full diagonalization of the mixed electric-quadrupole/magnetic-dipole interaction. This program uses the transmission integral, including the dispersion term for the E1 transition of 155 Gd, and enables also a multi-spectra fit of a temperature-dependent series of spectra monitoring a magnetic ordering, applied successfully in previous 155 Gd-Mösssbauer studies of complex magnetic structures [8].

3. Results and discussion

Typical ¹⁵⁵Gd-Mössbauer spectra, recorded at various low temperatures, are shown for GdPdSb and GdNiSb in Figs. 1 and 2, respectively. The spectra of GdPdSb, measured between 1.85 and 30 K, indicate below 13 K magnetic ordering, while they exhibit above 13 K an unresolved quadrupole splitting. From a simultaneous fit of seven spectra between 14 K and 30 K, an isomer shift S = 0.468(4) mm/s with respect to the ¹⁵⁵Eu:SmPd₃ source and an electric field gradient of $V_{zz} = \pm 1.65(25) \times 10^{21}$ V/m² was derived. The latter value corresponds to a relatively small quadrupole splitting, $\Delta E_Q = \pm 0.43$ mm/s, of the I = 3/2 ground state of the ¹⁵⁵Gd-resonance. Therefore, the sign of V_{zz} could not be derived unambiguously from the spectra with mixed

^{0925-8388/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.09.206

Fig. 1. Selected 155 Gd-Mössbauer spectra of GdPdSb at various temperatures (for details of the fit, see text).

electric-quadrupole/magnetic-dipole interaction at low temperatures, as done in previous ¹⁵⁵Gd-Mössbauer studies of Gd compounds with larger quadrupole splittings [8,9], and the spectra below 13 K were analysed therefore with a fixed value for the isomer shift and fixed positive and negative values of V_{zz} as given above (there is no significant temperature dependence for both the isomer shift and the quadrupole splitting to be expected at this low temperature range). Fig. 3 shows the derived hyperfine fields for a positive value of V_{zz} , from which a magnetic ordering temperature of 13.0(3)K was derived. It should be mentioned that a positive value of V_{zz} = +1.0 × 10²¹ V/m² was obtained also by selfconsistent band structure calculations using the full potential linear augmented plane wave (FLAPW) method [10]. This method was already successfully applied in previous Mössbauer investigations of *RE* intermetallics [11]. A positive sign of V_{zz} can be derived also from the positive sign of the B_2^0 CEF parameter, observed in isostructural CePdSb for the Ce site [12]. The present magnetic ordering temperature is in excellent agreement with $T_N = 13.1(3)$ K, derived in the previous magnetic investigation of GdPdSb of the same sample studied here [3]. These values of T_N are, however, systematically lower than the ones reported previously for GdPdSb with $T_{\rm N}$ = 15.5 K [12], $T_{\rm N}$ = 16.5 K [13], and $T_{\rm N}$ = 17 K [14]. These small differences are possibly due to relative large external fields applied in the magnetisation measurements [13,14] and/or due to the fact that GdPdSb samples with hexagonal LiGaGe structure may exhibit different degrees in crystalline order of the Pd and Sb neighbours, evidenced here in a broadened linewidth in the ¹⁵⁵Gd-spectra (see below). It should be mentioned that GdPdSb was initially attributed to the

Fig. 2. Selected ¹⁵⁵Gd-Mössbauer spectra of GdNiSb at various temperatures. The dominant cubic phase (dashed line, red) is fitted at 10 K and higher temperatures by a single line and exhibits magnetic splitting in the spectra below 10 K. The hexagonal minority phase (dashed-dotted line, green) is fitted by a quadrupole doublet, which exhibits magnetic broadening in the spectrum at 1.85 K (see text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 3. Temperature dependence of the magnetic hyperfine fields B_{hf} at the Gd sites in GdPdSb (full circles, red) and in the cubic phase of GdNiSb (full squares, black). The Brillouin-like lines, indicating the magnetic ordering temperatures, are guides to the eye. The values of B_{hf} for GdPdSb were derived with fixed values of V_{zz} = +1.65 × 10²¹ V/m² and β = 32° (see text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

hexagonal CaIn₂-type structure with a random distribution of Pd and Sb neighbours on the In sites [12–14].

An important information from the fits of the Mössbauer spectra of GdPdSb below T_N is delivered by the value of β , the angle between $B_{\rm hf}$, the magnetic hyperfine field, and $V_{\rm zz}$, the main axis of the electric field gradient. Since V_{zz} at the Gd ions is oriented parallel to the hexagonal *c*-axis due to the local symmetry, the angle β indicates the orientation of the ordered Gd moments with respect to the c-axis. For a positive sign of V_{zz} , we derive below 9 K a value of $\beta = 32(6)^{\circ}$. This observation could be explained by a ferromagnetic component, connected with a pronounced hysteresis as observed in the magnetisation measurements below 8 K [3], attributed to a canting of the Gd moments out of an initially anti-ferromagnetic arrangement. It should be mentioned that we derive for a negative value of V_{zz} a value of $\beta = 90(2)^\circ$. A final decision about the sign of V_{zz} and, correspondingly, about the value of β and the arrangement of the Gd moments, must await for further theoretical calculations of possible magnetically ordered Gd spin structures and further ¹⁵⁵Gd-Mössbauer studies, e.g. from single crystalline samples [6].

The ¹⁵⁵Gd-Mössbauer spectra of the GdNiSb sample (Fig. 2) demonstrate immediately the presence of two different phases, as indicated already in the XRD pattern. The dominant one with cubic MgAgAs-type structure can be unambiguously attributed to the unsplit resonance line in the spectra at 10K and higher temperatures. The minority phase with hexagonal AlB₂-type structure is monitored by a quadrupole doublet with a large value of $V_{zz} = \pm 10.7(5) \times 10^{21} \text{ V/m}^2$ and a relative intensity of 25(1)% with respect to the cubic phase. The analysis of the spectra below 10 K reveal a magnetic splitting of the cubic site, as evidenced by the well resolved symmetric magnetic splitting at low temperatures. From the variation of the magnetic hyperfine field $B_{hf}(T)$, magnetic ordering at $T_{\rm m}$ = 9.5(3)K is derived (see Fig. 3). This value is in sharp contrast to a previous study of GdNiSb, reporting from resistivity measurements for the cubic phase $T_{\rm N}$ = 3.7 K [4]. The hexagonal phase of GdNiSb, characterised by the large quadrupole splitting, shows the onset of magnetic ordering around 3.5 K, in accordance with the previous study, reporting $T_{\rm N}$ = 3.3 K for the hexagonal phase [4]. The fit analysis of this minority phase in the spectra below 4.2 K is strongly hampered by the spectral overlap with the magnetically split cubic phase. Best fits were obtained with a negative value of V_{ZZ} (in agreement with theoretical calculations as described above) and with $\beta = 90^{\circ}$, yielding values for the magnetic hyperfine field $B_{\rm hf}$ of 120(30) kG and 60(20) kG at 1.85 K and 3.0 K, respectively. Future ¹⁵⁵Gd-studies on GdNiSb samples with the hexagonal as majority phase [7] will deliver more information

on the magnetic properties of this phase. It is, at present, of interest that the observed isomer shifts are very similar, S = 0.484(4) mm/s and 0.460(6) mm/s for the cubic and hexagonal phase of GdNiSb, respectively, and compare well with S = 0.468(4) mm/s reported above for hexagonal GdPdSb. The observed absorber linewidths, $\Gamma_a = 0.40$ mm/s and 0.50 mm/s for the cubic and hexagonal phase of GdNiSb, respectively, and $\Gamma_a = 0.56$ mm/s for GdPdSb point to some structural disorder in both hexagonal phases, observed also in the ¹⁵⁵Gd-spectra of an other ternary Gd intermetallic [15]. Finally it should be noted that the local binding strength at the Gd sites in GdNiSb is stronger in the hexagonal phase than in the cubic phase as derived from ¹⁵⁵Gd-spectra measured up to 48 K.

Acknowledgements

This work was supported by the DFG grants WO209/12-3 and FE633/1-1 within the SPP1166. We acknowledge useful discussions with G.H. Fecher and J. Kübler.

References

- [1] R.D. Hoffmann, R. Pöttgen, Z. Kristallogr, 216 (2001) 127–145.
- [2] R. Pöttgen, D. Johrend, Chem. Mater. 12 (2000) 875–897.
- [3] F. Casper, H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D: Appl. Phys. 40 (2007) 3024–3029.
- [4] R.V. Skolozdra, A. Guzik, A.M. Goryn, J. Pierre, Acta Phys. Pol. A 92 (1997) 343-347.
- [5] K. Hartjes, W. Jeitschko, J. Alloys Compd. 226 (1995) 81-86.
- [6] A. Imre, A. Mewis, Z. Naturf. B 61 (2006) 17-22.
- [7] (a) F. Casper, PhD Thesis, Mainz 2008;
 (b) F. Casper et al., unpublished results on further investigations of GdNiSb samples prepared at different annealing conditions by ¹⁵⁵Gd-Mössbauer spectroscopy, XRD, and other methods.
- [8] (a) G.A. Stewart, S.J. Harker, M. Strecker, G. Wortmann, Phys. Rev. B 61 (2000) 6220–6226;
- (b) G.A. Stewart, et al., J. Magn. Magn. Mater. 292 (2005) 72–78.
 [9] K. Łątka, R. Kmieć, R. Kruk, A.W. Pacyna, Th. Fickenscher, R.-D. Hoffmann, R.
- Pöttgen, J. Solid State Chem. 178 (2005) 2077–2090.
 [10] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties,
- Techn. Universität Wien, Austria, 2001. [11] F. Casper, V. Ksenofontov, H.C. Kandpal, S. Reiman, T. Shishido, M. Takahashi, M.
- Takeda, C. Felser, Z. Anorg. Allg. Chem. 632 (2006) 1273–1280.
- (a) S.K. Malik, D.T. Adroja, Phys. Rev. B 43 (1991) 6295–6298;
 (b) D.T. Adroja, J.G.M. Armitage, P.C. Riedi, M.R. Lees, O.A. Petrenko, Phys. Rev. B 61 (2000) 1232–1239.
- [13] A. Zygmunt, A. Szytuła, J. Alloys Compd. 219 (1995) 185–188.
- 14] S.K. Malik, D.T. Adroja, J. Magn. Magn. Mater. 102 (1991) 42-46.
- [15] K. Łątka, R. Kmieć, A.W. Pacyna, J. Gurgul, V.I. Zaremba, R. Pöttgen, Solid State Sci. 8 (2006) 548–555.